Modelling and Control of a Pneumatic Motor Using Neural Networks
نویسندگان
چکیده
A considerable amount of interest has been shown by researchers in the control of pneumatic drives over the past decade, for two main reasons, firstly, the response is very slow and the inability to attain set points is high due to hystiresis and secondly, the dynamic model of the system is highly non-linear, which greatly complicates controller design and development. To address these problems, two streams of research efforts have evolved; (i) using conventional methods to develop a modelling and control strategy, (ii) adopting a strategy that does not require mathematical model of the system. This paper presents an investigation into the modelling and control of an air motor incorporating a pneumatic equivalent of the electric H-bridge. The pneumatic Hbridge has been devised for speed and direction control of the motor. The system is divided into three regions called low speed, medium speed and high speed. The system is highly nonlinear in the low speed region. Linear parametric models characterising the two linearised operating regions (medium and high speed) of the motor are developed using parametric estimation techniques and local controllers are developed using a pole-assignment design. A neuro-model and controller are
منابع مشابه
Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller
In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملNumerical and Neural Network Modeling and control of an Aircraft Propeller
In this paper, parametric and numerical model of the DC motor, connected to aircraft propellers are extracted. This model is required for controlling trust and velocity of the propellers, and consequently, an aircraft. As a result, both of torque and speed of the propeller can be controlled simultaneously which increases the kinematic and kinetic performance of the aircraft. Parametric model of...
متن کامل